Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 199: 105772, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458665

RESUMO

Phagocytosis "offense" is a crucial process to protect the organism from diseases and the effects of foreign particles. Insects rely on the innate immune system and thus any hindrance to phagocytosis may greatly affect their resistance to diseases and response to pathogens. The European honeybee, a valuable species due to its economic and environmental contribution, is being challenged by colony collapse disorder leading to its decline. Exposure to multiple factors including pesticides like imidacloprid and amitraz may negatively alter their immune response and ultimately make them more susceptible to diseases. In this study, we compare the effect of different concentrations and mixtures of imidacloprid and amitraz with different concentrations of the immune stimulant, zymosan A. Results show that imidacloprid and amitraz have a synergistic negative effect on phagocytosis. The lowered phagocytosis induces significantly higher hemocyte viability suggesting a negatively correlated protective mechanism "defense" from pesticide-associated damage but may not be protective from pathogens.


Assuntos
Hemócitos , Neonicotinoides , Nitrocompostos , Praguicidas , Toluidinas , Abelhas , Animais , Imunidade Inata , Fagocitose , Praguicidas/toxicidade
2.
Environ Toxicol Pharmacol ; 104: 104323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37995888

RESUMO

Pollinator health has been of critical concern over the last few decades. The prevalence of the honeybee Colony Collapse Disorder (CCD), changing climate, and the rise of vector-borne honeybee diseases by Varroa destructor, have played a major role in the rapid decline of global honeybee populations. Honeybees are environmentally and economically significant actors in biodiversity. The impact of agricultural practices, such as pesticide use, has exacerbated the negative effects on honeybees. We demonstrate the synergistic effect of cocktails of the neonicotinoids imidacloprid and acetamiprid on honeybee haemocytes. Two genes responsible for critical immune responses, spaetzle and myD88, are consistently dysregulated following exposure to either neonicotinoid alone or as a mixture with or without an immune challenge. The 2018 ban of neonicotinoids in Europe, followed by the 2020 reauthorisation of imidacloprid in France and the current consideration to reinstate acetamiprid underscores the need to evaluate their cumulative impact on honeybee health.


Assuntos
Inseticidas , Fator 88 de Diferenciação Mieloide , Abelhas , Animais , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade
4.
Front Immunol ; 14: 1247582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753094

RESUMO

Background: The immune system of honeybees includes multiple pathways that may be affected by pesticide exposure decreasing the immune competencies of bees and increasing their susceptibility to diseases like the fungal Nosema spp. infection, which is detected in collapsed colonies. Methods: To better understand the effect of the co-presence of multiple pesticides that interact with bees like imidacloprid and amitraz, we evaluated the expression of immune-related genes in honeybee hemocytes. Results: Imidacloprid, amitraz, and the immune activator, zymosan A, mainly affect the gene expression in the Toll pathway. Discussion: Imidacloprid, amitraz, and zymosan A have a synergistic or an antagonistic relationship on gene expression depending on the level of immune signaling. The presence of multiple risk factors like pesticides and pathogens requires the assessment of their complex interaction, which has differential effects on the innate immunity of honeybees as seen in this study.

5.
Insects ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36835742

RESUMO

Invertebrates have a diverse immune system that responds differently to stressors such as pesticides and pathogens, which leads to different degrees of susceptibility. Honeybees are facing a phenomenon called colony collapse disorder which is attributed to several factors including pesticides and pathogens. We applied an in vitro approach to assess the response of immune-activated hemocytes from Apis mellifera, Drosophila melanogaster and Mamestra brassicae after exposure to imidacloprid and amitraz. Hemocytes were exposed to the pesticides in single and co-exposures using zymosan A for immune activation. We measured the effect of these exposures on cell viability, nitric oxide (NO) production from 15 to 120 min and on extracellular hydrogen peroxide (H2O2) production after 3 h to assess potential alterations in the oxidative response. Our results indicate that NO and H2O2 production is more altered in honeybee hemocytes compared to D. melanogaster and M. brassicae cell lines. There is also a differential production at different time points after pesticide exposure between these insect species as contrasting effects were evident with the oxidative responses in hemocytes. The results imply that imidacloprid and amitraz act differently on the immune response among insect orders and may render honeybee colonies more susceptible to infection and pests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...